Numeric Response Questions

Progressions

- Q.1 If S_1 , S_2 , S_3 are the sums of first n natural numbers, their squares, their cubes respectively, then find the value of $\frac{S_3(1+8S_1)}{S_2^2}$.
- Q.2 Let $S_v = \frac{1}{1^3} + \frac{1+2}{1^3+2^3} + \dots + \frac{1+2+\dots+n}{1^3+2^3+\dots+n^3}$; $n = 1,2,8,\dots$... Then find maximum value of S_n .
- Q.3 A square is drawn by joining the mid-points of the sides of a given square. A third square is drawn inside the second square in the same way and this process continuous indefiniting. If a side of the first square is 4 cm and the sum of the area of all the squares is α then find the value of $\alpha/4$.
- Q.4 Lat 'p' and 'q' be the roots of the equation $x^2 2x + A = 0$, and Let "r" and "a" be the roots of the equation $x^2 18x + B = 0$. If p < q < x < s are in A.P. then find value of (A + B).
- Q.5 Find the number of terms common to the two sequences 17,21,25, ...,417 and 16,21,26, ...,466.
- Q.6 The repeating decimal 0.429642964296... represents the fraction $\frac{m}{3333}$ then find value of m.
- Q.7 Between 1 and 31 are inserted m arithmetic means, so that the ratio of the 7^{th} and (m-1) th means is 5:9. Then find the value of m.
- Q.8 If the ratio of sum of n terms of two different A.P's is $\frac{3n+5}{4n+3}$ then find the ratio of their 7th terms.
- Q.9 Find the maximum value of the sum of the A.P. 30,27,24,21, ...
- Q.10 If the sum of positive terms of the series $10 + 9\frac{4}{7} + 9\frac{1}{7} + \cdots$ is $\frac{k}{7}$ then find value of k.
- Q.11 If $a_1, a_2, ..., a_{15}$ are in A.P. and $a_1 + a_5 + a_{15} = 15$, then $a_2 + a_3 + a_5 + a_{13} + a_{14} = 15$
- Q.12 Let an be the nth term of an A.P. If $\sum_{r=1}^{100} a_{2r} = \alpha$ and $\sum_{r=1}^{10} a_{2r-1} = \beta$, and the common difference of A.P. is $\frac{\alpha \beta}{\lambda}$ then find λ
- Q.13 Sum of first n positive terms of an A.P. is given by $S_n = (1 + 2 T_n)(1 T_n)$. If the value of T_2^2 is $\frac{\sqrt{2}-1}{k\sqrt{2}}$ then find k
- Q.14 If $\frac{3+5+7+\cdots...+(2n-1)}{5+8+11+\cdots...+10 \text{ terms}} = 7 \text{ then find value of } n.$
- Q.15 Find sum of the series $S = 1 + \frac{1}{2}(1+2) + \frac{1}{3}(1+2+3) + \frac{1}{4}(1+2+3+4) + \cdots$ upto 20 terms.

ANSWER KEY

1. 9.00

2. 2.00

3. 8.00

4. 74.00

5. 20.00

6. 1432.00

7. 14.00

8. 0.80

9. 165.00

10. 852.00

11. 25.00

12. 100.00

13. 2.00

14. 36.00

15. 115.00

Hints & Solutions

1.
$$\frac{S_3(1+8S_1)}{S_2^2} = \frac{\left[\frac{n(n+1)}{2}\right]^2 \left(1 + \frac{8n(n+1)}{2}\right)}{\left(\frac{n(n+1)(2n+1)}{6}\right)^2}$$
$$= \frac{9[1+4n(n+1)]}{(2n+1)^2} = 9$$

$$s_n = \frac{1}{l^3} + \frac{1+2}{l^3+2^3} + \ldots + \frac{1+2+\ldots\ldots+n}{l^3+2^3+\ldots\ldots+n^3};$$

$$n = 1, 2, 3, \ldots \ldots$$
 we have
$$t_n = \frac{1+2+3+\ldots+n}{l^3+2^3+3^3+\ldots+n^3}$$

$$= \frac{\Sigma n}{\Sigma n^3} = \frac{\frac{n(n+1)}{2}}{\left(\frac{n(n+1)}{2}\right)^2} = \frac{\frac{n(n+1)}{2}}{\frac{n^2(n+1)^2}{4}}$$

$$=\frac{2}{n(n+1)}=2\left[\frac{1}{n}-\frac{1}{n+1}\right]$$

$$\Rightarrow \sum_{k=1}^n t_k = 2 \! \left\{ \! \left(1 \! - \! \frac{1}{2}\right) \! + \! \left(\frac{1}{2} \! - \! \frac{1}{3}\right) \! + \ldots \! + \! \left(\frac{1}{n} \! - \! \frac{1}{n-1}\right) \! \right\}$$

$$=2\left(1-\frac{1}{n+1}\right)=\frac{2n}{n+1}$$

$$\Rightarrow$$
 s_n = $\frac{2n}{n+1}$ = 2 $\left(1 - \frac{1}{n+1}\right)$ = 2 - $\frac{2}{n+1}$

$$\Rightarrow s_n = 2 - \frac{2}{n+1} \Rightarrow s_n = 2 - \frac{2}{n+1} < 2$$

when $n \to \infty$, $s_n = 2$

 \therefore s_n is not greater than 2 Ans.

3. If a side of any square is x cm, then the side of the square obtained by joining its mid-points is given by

$$\sqrt{\left(\frac{x}{2}\right)^2 + \left(\frac{x}{2}\right)^2} = \frac{x}{\sqrt{2}} \text{ cm}$$

and such its area is

$$\left(\frac{x}{\sqrt{2}}\right)^2 = \frac{x^2}{2} \text{ cm}^2$$

Now the area of the first square is $4^2 = 16$ sq cm. The area of the second square is 859 sq cm, the area of the third square is 4 sq cm and so on. Hence the sum of the areas is given by

 $16 + 8 + 4 + 2 + \dots$ upto infinite

$$=\frac{16}{1-(1/2)}$$

$$=\frac{16}{1/2}$$

$$= 16 \times 2$$

 $=32 \text{ cm}^2 \text{ Ans.}$

4. Let common difference of A.P. is d. then Let $p = \lambda$, $q = \lambda + d$, $r = \lambda + 2d$, $s = \lambda + 3d$ $\therefore p + q = 2 \Rightarrow 2\lambda + d = 2$ (1) and $r + s = 18 \Rightarrow 2\lambda + 5d = 18$ (2) on solving (1) & (2) $\lambda = -1$ & d = 4so p = -1, q = 3, r = 7, s = 11

5. First common term is 21 and common difference of series of common terms is LCM of 20. So n^{th} term of series of common term is $21 + (n-1) \ 20 = 20 \ n + 1$

$$20 \text{ n} + 1 \le 417$$

So
$$n \le \frac{416}{20}$$

 $n \le 20.8$
So $n = 20$

6.
$$x = 0.429642964296$$
(i)
 $10000x = 4296.42964296$ (ii)
 $9999x = 4296 \Rightarrow x = \frac{1432}{3333}$

7.
$$d = \frac{31-1}{m+1} = \frac{30}{m+1}$$
$$\frac{A_7}{A_{m-1}} = \frac{1+7d}{31-2d} = \frac{5}{9}$$
$$\Rightarrow d = 2 = \frac{30}{m+1} \Rightarrow m = 14$$

8.
$$\frac{S_n}{S_n'} = \frac{3n+5}{4n+3}$$
So for $\frac{T_7}{T_7'}$ put $n = (2 \times 7) - 1 = 13$

$$\therefore \frac{T_7}{T_7'} = \frac{3(13)+5}{4(13)+3} = \frac{44}{55} = \frac{4}{5}$$

9. Let
$$I_n = 0$$

 $30 + (n - 1) (-3) = 0$
 $n - 1 = 10$
 $n = 11$
Sum is max if $n = 11$
Max sum $= \frac{11}{2} [30]$
 $= \frac{330}{2} = 165$

10.
$$10 + \frac{67}{7} + \frac{64}{7} + \dots$$

$$= \frac{70}{7} + \frac{67}{7} + \frac{64}{7} + \dots + T_n$$

$$let T_n < 0$$

$$\Rightarrow \frac{70}{7} + (n-1) \cdot \left(\frac{-3}{7}\right) < 0$$

$$10 - \frac{3}{7}n + \frac{3}{7} < 0$$

$$\frac{3n}{7} > \frac{73}{7}$$

$$3n > 73$$

$$n > 24.3 \dots$$

$$\begin{array}{l} :: n \in N \Rightarrow n = 25, 26, \\ \Rightarrow T_{25} = first - ve \ term \\ :: Sum \ of \ positive \ terms = S_{24} \\ = \frac{24}{2} \left[2 \times 10 + (24 - 1) \left(\frac{-3}{7} \right) \right] = 12 \times \left[20 - \frac{69}{7} \right] \\ = \frac{12 \times 71}{7} = \frac{852}{7} \end{array}$$

11.
$$(a_1 + a_5) = 2a_8$$

$$\Rightarrow 3a_8 = 15$$

$$\Rightarrow a_8 = 5$$
Now $a_2 + a_3 + a_8 + a_{13} + a_{14}$

$$= (a_2 + a_{14}) + (a_3 + a_{13}) + a_8$$

$$= 5a_8 = 25$$

12.
$$a_2 + a_4 + \dots + a_{200} = \alpha$$

$$a_1 + a_3 + \dots + a_{199} = \beta$$

$$- \dots$$

$$d + d + d + \dots + d = \alpha - \beta$$

$$100d = \alpha - \beta$$

$$d = \frac{\alpha - \beta}{100}$$

13.
$$T_{1} = S_{1} = (1 + 2T_{1}) (1 - T_{1})$$

$$\Rightarrow T_{1} = 1/\sqrt{2} (T_{1} > 0)$$

$$\text{Now, } T_{1} + T_{2} = S_{2} = (1 + 2T_{2}) (1 - T_{2})$$

$$\Rightarrow 2T_{2}^{2} = 1 - T_{1} = 1 - \frac{1}{\sqrt{2}} = \frac{\sqrt{2} - 1}{\sqrt{2}}$$

$$\text{or } T_{2}^{2} = \frac{\sqrt{2} - 1}{2\sqrt{2}}$$

14.
$$n^2 - 1 = 7 \left[\frac{10}{2} [10 + 9.3] \right] = 35.37 \Rightarrow n = 36$$

15.
$$S = 1 + \frac{1}{2}(1+2) + \frac{1}{3}(1+2+3) + \frac{1}{4}(1+2+3) + \frac{1}{4}(1+2$$

